On recommendation problems beyond points of interest

نویسندگان

  • Ting Deng
  • Wenfei Fan
  • Floris Geerts
چکیده

Recommendation systems aim to recommend items or packages of items that are likely to be of interest to users. Previous work on recommendation systems has mostly focused on recommending points of interest (POI), to identify and suggest top-k items or packages that meet selection criteria and satisfy compatibility constraints on items in a package, prior work, this paper investigates two issues beyond POI recommendation that are also important to recommendation systems. When there exist no sufficiently many POI that can be recommended, we propose (1) query relaxation recommendation to help users revise their selection criteria, or (2) adjustment recommendation to guide recommendation systems to modify their item collections, such that the users' requirements can be

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and implementation of a WEBGIS-based recommendation system based on context-awareness for tourism planning

Today, tourism is one of the most lucrative industries in the world. Due to the large amount of information that exists about the points of Interest (POI) of a city, the tourist is faced with an overload of information. As a result, a recommending system is needed to recommend suitable tourist places to the tourist in the shortest time. In order to offer a better offer, the interests and contex...

متن کامل

Personalized POI Travel Recommendation from Social Media

Travel based recommendation and journey planning are challenging tasks because of various interest preferences and trip restrictions such as limitation of time, source and destination points for each tourist. Large amount of data can be collected from the Internet and travel guides, but these resources normally recommend individual Point of Interest (POI) that is considered to be familiar, but ...

متن کامل

Hybrid Rating Prediction using Graph Regularization from Network Structure

To understand users’ preference and business performance in terms of customer interest, rating prediction systems are wildly deployed on many social websites. These systems are usually based on the users past history of reviews and similar users. Such traditional recommendation systems suffer from two problems. The first is the cold start problem. In many cases, the system has no knowledge abou...

متن کامل

Personalized Tour Recommendation Based on User Interests and Points of Interest Visit Durations

Tour recommendation and itinerary planning are challenging tasks for tourists, due to their need to select Points of Interest (POI) to visit in unfamiliar cities, and to select POIs that align with their interest preferences and trip constraints. We propose an algorithm called PERSTOUR for recommending personalized tours using POI popularity and user interest preferences, which are automaticall...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Syst.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015